dc.contributor.author
Bujtás, Csilla
dc.contributor.author
Rote, Günter
dc.contributor.author
Tuza, Zsolt
dc.date.accessioned
2024-10-22T12:02:36Z
dc.date.available
2024-10-22T12:02:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45356
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45068
dc.description.abstract
In a hypergraph ℋ = (V, ℰ) with vertex set V and edge set ℰ, a real-valued function f: V → [0, 1] is a fractional transversal if ∑v ∈ E f(v) ≥ 1 holds for every E ∈ ℰ. Its size is |f| := ∑v ∈ V f(v), and the fractional transversal number τ*(ℋ) is the smallest possible |f|.
We consider a game scenario where two players have opposite goals, one of them trying to minimize and the other to maximize the size of a fractional transversal constructed incrementally. We prove that both players have strategies to achieve their common optimum, and they can reach their goals using rational weights.
en
dc.format.extent
19 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Fractional vertex cover
en
dc.subject
fractional transversal game
en
dc.subject
fractional domination game
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Optimal strategies in fractional games: vertex cover and domination
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
P305
dcterms.bibliographicCitation.doi
10.26493/1855-3974.2771.4df
dcterms.bibliographicCitation.journaltitle
Ars Mathematica Contemporanea
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
24
dcterms.bibliographicCitation.url
https://doi.org/10.26493/1855-3974.2771.4df
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1855-3974
refubium.resourceType.provider
WoS-Alert