dc.contributor.author
Trijp, Jacobus P. van
dc.contributor.author
Hribernik, Nives
dc.contributor.author
Lim, Jia Hui
dc.contributor.author
Dal Colle, Marlene C. S.
dc.contributor.author
Mena, Yadiel Vázquez
dc.contributor.author
Ogawa, Yu
dc.contributor.author
Delbianco, Martina
dc.date.accessioned
2024-10-17T10:58:37Z
dc.date.available
2024-10-17T10:58:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45293
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45005
dc.description.abstract
A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well‐defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation‐assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme‐triggered assembly (ETA) for the on‐demand formation of well‐defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo‐electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non‐natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures.
en
dc.format.extent
7 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Nanomaterials
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Enzyme‐Triggered Assembly of Glycan Nanomaterials
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-10-15T18:11:01Z
dcterms.bibliographicCitation.articlenumber
e202410634
dcterms.bibliographicCitation.doi
10.1002/anie.202410634
dcterms.bibliographicCitation.journaltitle
Angewandte Chemie International Edition
dcterms.bibliographicCitation.number
42
dcterms.bibliographicCitation.volume
63
dcterms.bibliographicCitation.url
https://doi.org/10.1002/anie.202410634
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1433-7851
dcterms.isPartOf.eissn
1521-3773
refubium.resourceType.provider
DeepGreen