dc.contributor.author
Singh, Kanishka
dc.contributor.author
Lee, Ka Hei
dc.contributor.author
Peláez, Daniel
dc.contributor.author
Bande, Annika
dc.date.accessioned
2024-10-16T11:42:00Z
dc.date.available
2024-10-16T11:42:00Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45286
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44998
dc.description.abstract
In this work, we discuss the use of a recently introduced machine learning (ML) technique known as Fourier neural operators (FNO) as an efficient alternative to the traditional solution of the time‐dependent Schrödinger equation (TDSE). FNOs are ML models which are employed in the approximated solution of partial differential equations. For a wavepacket propagating in an anharmonic potential and for a tunneling system, we show that the FNO approach can accurately and faithfully model wavepacket propagation via the density. Additionally, we demonstrate that FNOs can be a suitable replacement for traditional TDSE solvers in cases where the results of the quantum dynamical simulation are required repeatedly such as in the case of parameter optimization problems (e.g., control). The speed‐up from the FNO method allows for its combination with the Markov‐chain Monte Carlo approach in applications that involve solving inverse problems such as optimal and coherent laser control of the outcome of dynamical processes.
en
dc.format.extent
14 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Fourier neural operators
en
dc.subject
machine learning
en
dc.subject
quantum dynamics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
Accelerating wavepacket propagation with machine learning
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-10-15T16:06:03Z
dcterms.bibliographicCitation.doi
10.1002/jcc.27443
dcterms.bibliographicCitation.journaltitle
Journal of Computational Chemistry
dcterms.bibliographicCitation.number
28
dcterms.bibliographicCitation.pagestart
2360
dcterms.bibliographicCitation.pageend
2373
dcterms.bibliographicCitation.volume
45
dcterms.bibliographicCitation.url
https://doi.org/10.1002/jcc.27443
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0192-8651
dcterms.isPartOf.eissn
1096-987X
refubium.resourceType.provider
DeepGreen