dc.contributor.author
Dubey, Akshat
dc.contributor.author
Yang, Zewen
dc.contributor.author
Hattab, Georges
dc.date.accessioned
2024-10-10T11:43:35Z
dc.date.available
2024-10-10T11:43:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45236
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44948
dc.description.abstract
The growing AI field faces trust, transparency, fairness, and discrimination challenges. Despite the need for new regulations, there is a mismatch between regulatory science and AI, preventing a consistent framework. A five-layer nested model for AI design and validation aims to address these issues and streamline AI application design and validation, improving fairness, trust, and AI adoption. This model aligns with regulations, addresses AI practitioners’ daily challenges, and offers prescriptive guidance for determining appropriate evaluation approaches by identifying unique validity threats. We have three recommendations motivated by this model: (1) Authors should distinguish between layers when claiming contributions to clarify the specific areas in which the contribution is made and to avoid confusion; (2) authors should explicitly state upstream assumptions to ensure that the context and limitations of their AI system are clearly understood, (3) AI venues should promote thorough testing and validation of AI systems and their compliance with regulatory requirements.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
nested model
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
A nested model for AI design and validation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
110603
dcterms.bibliographicCitation.doi
10.1016/j.isci.2024.110603
dcterms.bibliographicCitation.journaltitle
iScience
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.volume
27
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.isci.2024.110603
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2589-0042
refubium.resourceType.provider
WoS-Alert