dc.contributor.author
Yasin, Said
dc.contributor.author
Paschke, Adrian
dc.contributor.author
Al Qundus, Jamal
dc.date.accessioned
2025-01-06T09:06:38Z
dc.date.available
2025-01-06T09:06:38Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45176
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44888
dc.description.abstract
Predicting stock price movements remains a major challenge in time series analysis. Despite extensive research on various machine learning techniques, few models have consistently achieved success in automated stock trading. One of the main challenges in stock price forecasting is that the optimal model changes over time due to market dynamics. This paper aims to predict stock prices using automated reinforcement learning algorithms and to analyse their efficiency compared with conventional methods. We automate DQN models and their variants, known for their adaptability, by continuously retraining them using recent data to capture market dynamics. We demonstrate that our dynamic models improve the accuracy of predicting the directions of various DAX stocks from 50.00% to approximately 60.00%, compared with conventional methods. Additionally, we conclude that dynamic models should be updated in response to shifts rather than at fixed intervals.
en
dc.format.extent
27 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
deep Q-learning
en
dc.subject
reinforcement learning
en
dc.subject
stock price prediction
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Prediction of stock prices with automated reinforced learning algorithms
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e13725
dcterms.bibliographicCitation.doi
10.1111/exsy.13725
dcterms.bibliographicCitation.journaltitle
Expert Systems
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
42
dcterms.bibliographicCitation.url
https://doi.org/10.1111/exsy.13725
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1468-0394