dc.contributor.author
Bortoletto, Enrico
dc.contributor.author
Lindner, Niels
dc.contributor.author
Masing, Berenike
dc.date.accessioned
2025-03-27T08:54:26Z
dc.date.available
2025-03-27T08:54:26Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45162
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44874
dc.description.abstract
The Periodic Event Scheduling Problem (PESP) is the standard mathematical tool for optimizing periodic timetables in public transport. A solution to a PESP instance consists of three parts: a periodic timetable, a periodic tension, and integer offset values. While the space of periodic tensions has received much attention in the past, we explore geometric properties of the other two components. The general aim of this paper is to establish novel connections between periodic timetabling and discrete geometry. Firstly, we study the space of feasible periodic timetables as a disjoint union of polytropes. These are polytopes that are convex both classically and in the sense of tropical geometry. We then study this decomposition and use it to outline a new heuristic for PESP, based on neighbourhood relations of the polytropes. Secondly, we recognize that the space of fractional cycle offsets is in fact a zonotope, and then study its zonotopal tilings. These are related to the hyperrectangle of fractional periodic tensions, as well as the polytropes of the periodic timetable space, and we detail their interplay. To conclude, we also use this new understanding to give tight lower bounds on the minimum width of an integral cycle basis.
en
dc.format.extent
45 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Periodic timetabling
en
dc.subject
Tropical geometry
en
dc.subject
Zonotopal tilings
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
The Tropical and Zonotopal Geometry of Periodic Timetables
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00454-024-00686-2
dcterms.bibliographicCitation.journaltitle
Discrete & Computational Geometry
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
719
dcterms.bibliographicCitation.pageend
763
dcterms.bibliographicCitation.volume
73
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00454-024-00686-2
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0444