dc.contributor.author
Stockhammer, Alexander
dc.contributor.author
Adarska, Petia
dc.contributor.author
Natalia, Vini
dc.contributor.author
Heuhsen, Anja
dc.contributor.author
Klemt, Antonia
dc.contributor.author
Bregu, Gresy
dc.contributor.author
Harel, Shelly
dc.contributor.author
Rodilla-Ramirez, Carmen
dc.contributor.author
Spalt, Carissa
dc.contributor.author
Özsoy, Ece
dc.contributor.author
Leupold, Paula
dc.contributor.author
Grindel, Alica
dc.contributor.author
Fox, Eleanor
dc.contributor.author
Mejedo, Joy Orezimena
dc.contributor.author
Zehtabian, Amin
dc.contributor.author
Ewers, Helge
dc.contributor.author
Puchkov, Dmytro
dc.contributor.author
Haucke, Volker
dc.contributor.author
Bottanelli, Francesca
dc.date.accessioned
2024-11-20T08:51:07Z
dc.date.available
2024-11-20T08:51:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45160
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44872
dc.description.abstract
Cellular membrane homoeostasis is maintained via a tightly regulated membrane and cargo flow between organelles of the endocytic and secretory pathways. Adaptor protein complexes (APs), which are recruited to membranes by the small GTPase ARF1, facilitate cargo selection and incorporation into trafficking intermediates. According to the classical model, small vesicles would facilitate bi-directional long-range transport between the Golgi, endosomes and plasma membrane. Here we revisit the intracellular organization of the vesicular transport machinery using a combination of CRISPR-Cas9 gene editing, live-cell high temporal (fast confocal) or spatial (stimulated emission depletion) microscopy as well as correlative light and electron microscopy. We characterize tubulo-vesicular ARF1 compartments that harbour clathrin and different APs. Our findings reveal two functionally different classes of ARF1 compartments, each decorated by a different combination of APs. Perinuclear ARF1 compartments facilitate Golgi export of secretory cargo, while peripheral ARF1 compartments are involved in endocytic recycling downstream of early endosomes. Contrary to the classical model of long-range vesicle shuttling, we observe that ARF1 compartments shed ARF1 and mature into recycling endosomes. This maturation process is impaired in the absence of AP-1 and results in trafficking defects. Collectively, these data highlight a crucial role for ARF1 compartments in post-Golgi sorting.
en
dc.format.extent
39 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Super-resolution microscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.title
ARF1 compartments direct cargo flow via maturation into recycling endosomes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41556-024-01518-4
dcterms.bibliographicCitation.journaltitle
Nature Cell Biology
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.pagestart
1845
dcterms.bibliographicCitation.pageend
1859
dcterms.bibliographicCitation.volume
26
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41556-024-01518-4
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1476-4679