dc.contributor.author
Hanu, Matei
dc.contributor.author
Hesser, Jürgen
dc.contributor.author
Kanschat, Guido
dc.contributor.author
Moviglia, Javier
dc.contributor.author
Schillings, Claudia
dc.contributor.author
Stallkamp, Jan
dc.date.accessioned
2024-10-07T12:41:55Z
dc.date.available
2024-10-07T12:41:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45156
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44868
dc.description.abstract
This paper addresses the challenging task of guide wire navigation in cardiovascular interventions, focusing on the parameter estimation of a guide wire system using Ensemble Kalman Inversion (EKI) with a subsampling technique. The EKI uses an ensemble of particles to estimate the unknown quantities. However, since the data misfit has to be computed for each particle in each iteration, the EKI may become computationally infeasible in the case of high-dimensional data, e.g. high-resolution images. This issue can been addressed by randomised algorithms that utilize only a random subset of the data in each iteration. We introduce and analyse a subsampling technique for the EKI, which is based on a continuous-time representation of stochastic gradient methods and apply it to on the parameter estimation of our guide wire system. Numerical experiments with real data from a simplified test setting demonstrate the potential of the method.
en
dc.format.extent
21 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Guide wire navigation
en
dc.subject
Ensemble Kalman Inversion
en
dc.subject
Randomized Algorithms
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Ensemble Kalman inversion for image guided guide wire navigation in vascular systems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
21
dcterms.bibliographicCitation.doi
10.1186/s13362-024-00159-4
dcterms.bibliographicCitation.journaltitle
Journal of Mathematics in Industry
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
14
dcterms.bibliographicCitation.url
https://doi.org/10.1186/s13362-024-00159-4
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2190-5983