dc.contributor.author
Schiekiera, Louis
dc.contributor.author
Diederichs, Jonathan
dc.contributor.author
Niemeyer, Helen
dc.date.accessioned
2024-09-26T11:21:29Z
dc.date.available
2024-09-26T11:21:29Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45033
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44744
dc.description.abstract
This study addresses the gap in machine learning tools for positive results classification by evaluating the performance of SciBERT, a transformer model pretrained on scientific text, and random forest in clinical psychology abstracts. Over 1,900 abstracts were annotated into two categories: positive results only and mixed or negative results. Model performance was evaluated on three benchmarks. The best-performing model was utilized to analyze trends in over 20,000 psychotherapy study abstracts. SciBERT outperformed all benchmarks and random forest in in-domain and out-of-domain data. The trend analysis revealed nonsignificant effects of publication year on positive results for 1990–2005, but a significant decrease in positive results between 2005 and 2022. When examining the entire time span, significant positive linear and negative quadratic effects were observed. Machine learning could support future efforts to understand patterns of positive results in large data sets. The fine-tuned SciBERT model was deployed for public use.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
positive results
en
dc.subject
negative results
en
dc.subject
machine learning
en
dc.subject
natural language processing
en
dc.subject
text classification
en
dc.subject.ddc
100 Philosophie und Psychologie::150 Psychologie::150 Psychologie
dc.title
Classifying Positive Results in Clinical Psychology Using Natural Language Processing
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
100796
dcterms.bibliographicCitation.doi
10.1027/2151-2604/a000563
dcterms.bibliographicCitation.journaltitle
Zeitschrift für Psychologie
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.originalpublishername
Hogrefe
dcterms.bibliographicCitation.originalpublisherplace
Göttingen
dcterms.bibliographicCitation.pagestart
147
dcterms.bibliographicCitation.pageend
159
dcterms.bibliographicCitation.volume
232
dcterms.bibliographicCitation.url
https://doi.org/10.1027/2151-2604/a000563
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.affiliation.other
Arbeitsbereich Klinisch-Psychologische Intervention
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2151-2604