dc.contributor.author
Cremer, Julian
dc.contributor.author
Le, Tuan
dc.contributor.author
Noé, Frank
dc.contributor.author
Clevert, Djork-Arné
dc.contributor.author
Schütt, Kristof T.
dc.date.accessioned
2024-09-19T05:31:55Z
dc.date.available
2024-09-19T05:31:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44971
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44682
dc.description.abstract
The generation of ligands that both are tailored to a given protein pocket and exhibit a range of desired chemical properties is a major challenge in structure-based drug design. Here, we propose an in silico approach for the de novo generation of 3D ligand structures using the equivariant diffusion model PILOT, combining pocket conditioning with a large-scale pre-training and property guidance. Its multi-objective trajectory-based importance sampling strategy is designed to direct the model towards molecules that not only exhibit desired characteristics such as increased binding affinity for a given protein pocket but also maintains high synthetic accessibility. This ensures the practicality of sampled molecules, thus maximizing their potential for the drug discovery pipeline. PILOT significantly outperforms existing methods across various metrics on the common benchmark dataset CrossDocked2020. Moreover, we employ PILOT to generate novel ligands for unseen protein pockets from the Kinodata-3D dataset, which encompasses a substantial portion of the human kinome. The generated structures exhibit predicted IC50 values indicative of potent biological activity, which highlights the potential of PILOT as a powerful tool for structure-based drug design.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
generation of ligands
en
dc.subject
protein pocket
en
dc.subject
equivariant diffusion
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
PILOT: equivariant diffusion for pocket-conditioned de novo ligand generation with multi-objective guidance via importance sampling
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-09-19T03:21:54Z
dcterms.bibliographicCitation.doi
10.1039/d4sc03523b
dcterms.bibliographicCitation.journaltitle
Chemical Science
dcterms.bibliographicCitation.number
36
dcterms.bibliographicCitation.pagestart
14954
dcterms.bibliographicCitation.pageend
14967
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D4SC03523B
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2041-6520
dcterms.isPartOf.eissn
2041-6539
refubium.resourceType.provider
DeepGreen