dc.contributor.author
Alcón, Isaac
dc.contributor.author
Canonico, Luis Manuel
dc.contributor.author
Papior, Nick
dc.contributor.author
Garcia, Jose-Hugo
dc.contributor.author
Cummings, Aron W.
dc.contributor.author
Tremblay, Jean-Christophe
dc.contributor.author
Pruneda, Miguel
dc.contributor.author
Brandbyge, Mads
dc.contributor.author
Paulus, Beate
dc.contributor.author
Roche, Stephan
dc.date.accessioned
2025-01-06T08:52:52Z
dc.date.available
2025-01-06T08:52:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44897
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44607
dc.description.abstract
In recent years, it has become possible via on-surface bottom-up synthesis to engineer the topological character of carbon nanostructures. Graphene nanoribbons and 1D conjugated polymers (1DCPs) have thus tailored so as to host either topologically trivial or non-trivial phases. Molecular design is the primary means to set the topological class of these nanomaterials. However, external control over topology is also demonstrated via electric fields or top-down hydrogenation. Inspired by the connection between topology and π-conjugation, here it is demonstrated via first-principles calculations that aryl ring twist angles also serve as topological knobs. Focusing on rationally designed 1DCPs composed of triarylmethyl (TAM) units, it is shown that rotation of certain aryl rings enables a transition from the trivial to the topologically non-trivial phase. Accordingly, fixing a particular twist angle configuration (e.g., via chemical functionalization) is equivalent to robustly setting a targeted topological phase. It is also found that in considered 1DCPs, the quantum phase transition occurs without the electronic band gap closing, due to a multiradical antiferromagnetic phase emerging at the transition point. All in all, this study highlights the potential of aryl ring twisting for engineering topological properties in carbon nanomaterials and establishes TAM 1DCPs as exotic topological 1D systems.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
antiferromagnetism
en
dc.subject
aryl ring twist
en
dc.subject
boundary-states
en
dc.subject
conjugated polymers
en
dc.subject
density functional theory
en
dc.subject
quantum-phase transition
en
dc.subject
topological-phases
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Twisting Between Topological Phases in 1D Conjugated Polymers via a Multiradical Transition State
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2409174
dcterms.bibliographicCitation.doi
10.1002/adfm.202409174
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
49
dcterms.bibliographicCitation.volume
34
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202409174
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
WoS-Alert