dc.contributor.author
Beutler, Tarek
dc.contributor.author
Rudolph, Annette
dc.contributor.author
Goehring, Daniel
dc.contributor.author
Vercauteren, Nikki
dc.date.accessioned
2024-11-20T08:38:48Z
dc.date.available
2024-11-20T08:38:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44865
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44575
dc.description.abstract
Precipitation nowcasting refers to the prediction of precipitation intensity in a local region and in a short timeframe up to 6 hours. The evaluation of spatial and temporal information still challenges state-of-the-art numerical weather prediction models. The increasing possibilities to store and evaluate data combined with the advancements in the developments of artificial intelligence algorithms make it natural to use these methods to improve precipitation nowcasting. In this work, a Trajectory Gated Recurrent Unit (TrajGRU) is applied to radar data of the German Weather Service. The impact of finetuning a network pretrained at a different location and for several precipitation intensity thresholds with respect to the training time is evaluated. In cases with little availability of training data at the target location, for example when heavy rainfall is rare, the finetuned model can benefit from the original model performance at the pretraining location. Furthermore, the skill scores for the different thresholds are shown for a prediction time up to 100 minutes. The results highlight promising regional extrapolation capabilities for such neural networks for precipitation nowcasting.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Precipitation nowcasting
en
dc.subject
deep learning
en
dc.subject
Trajectory Gated Recurrent Unit
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Exploring the ability of regional extrapolation for precipitation nowcasting with deep learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1127/metz/2024/1189
dcterms.bibliographicCitation.journaltitle
Meteorologische Zeitschrift
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
305
dcterms.bibliographicCitation.pageend
321
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1127/metz/2024/1189
refubium.affiliation
Mathematik und Informatik
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Informatik
refubium.affiliation.other
Institut für Meteorologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1610-1227
refubium.resourceType.provider
WoS-Alert