dc.contributor.author
Quer, J.
dc.contributor.author
Borrell, Enric Ribera
dc.date.accessioned
2024-09-09T07:00:17Z
dc.date.available
2024-09-09T07:00:17Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44827
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44537
dc.description.abstract
In this paper the connection between stochastic optimal control and reinforcement learning is investigated. Our main motivation is to apply importance sampling to sampling rare events which can be reformulated as an optimal control problem. By using a parameterised approach the optimal control problem becomes a stochastic optimization problem which still raises some open questions regarding how to tackle the scalability to high-dimensional problems and how to deal with the intrinsic metastability of the system. To explore new methods we link the optimal control problem to reinforcement learning since both share the same underlying framework, namely a Markov Decision Process (MDP). For the optimal control problem we show how the MDP can be formulated. In addition we discuss how the stochastic optimal control problem can be interpreted in the framework of reinforcement learning. At the end of the article we present the application of two different reinforcement learning algorithms to the optimal control problem and a comparison of the advantages and disadvantages of the two algorithms.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
stochastic optimal control
en
dc.subject
reinforcement learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Connecting stochastic optimal control and reinforcement learning
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
101079
dcterms.bibliographicCitation.articlenumber
083512
dcterms.bibliographicCitation.doi
10.1063/5.0140665
dcterms.bibliographicCitation.journaltitle
Journal of Mathematical Physics
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics (AIP)
dcterms.bibliographicCitation.originalpublisherplace
Melville, NY
dcterms.bibliographicCitation.volume
65
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0140665
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7658
refubium.resourceType.provider
WoS-Alert