dc.contributor.author
Becking, Daniel
dc.contributor.author
Müller, Karsten
dc.contributor.author
Haase, Paul
dc.contributor.author
Kirchhoffer, Heiner
dc.contributor.author
Tech, Gerhard
dc.contributor.author
Samek, Wojciech
dc.contributor.author
Schwarz, Heiko
dc.contributor.author
Marpe, Detlev
dc.contributor.author
Wiegand, Thomas
dc.date.accessioned
2024-09-05T11:31:39Z
dc.date.available
2024-09-05T11:31:39Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44813
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44523
dc.description.abstract
Distributed learning requires a frequent communication of neural network update data. For this, we present a set of new compression tools, jointly called differential neural network coding (dNNC). dNNC is specifically tailored to efficiently code incremental neural network updates and includes tools for federated BatchNorm folding (FedBNF), structured and unstructured sparsification, tensor row skipping, quantization optimization and temporal adaptation for improved context-adaptive binary arithmetic coding (CABAC). Furthermore, dNNC provides a new parameter update tree (PUT) mechanism, which allows to identify updates for different neural network parameter sub-sets and their relationship in synchronous and asynchronous neural network communication scenarios. Most of these tools have been included into the standardization process of the NNC standard (ISO/IEC 15938-17) edition 2. We benchmark dNNC in multiple federated and split learning scenarios using a variety of NN models and data including vision transformers and large-scale ImageNet experiments: It achieves compression efficiencies of 60% in comparison to the NNC standard edition 1 for transparent coding cases, i.e., without degrading the inference or training performance. This corresponds to a reduction in the size of the NN updates to less than 1% of their original size. Moreover, dNNC reduces the overall energy consumption required for communication in federated learning systems by up to 94%.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Neural network coding
en
dc.subject
federated learning
en
dc.subject
transfer learning
en
dc.subject
split learning
en
dc.subject
efficient NN communication
en
dc.subject
ISO/IEC MPEG standards
en
dc.subject
federated batchnorm folding
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Neural Network Coding of Difference Updates for Efficient Distributed Learning Communication
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1109/TMM.2024.3357198
dcterms.bibliographicCitation.journaltitle
IEEE Transactions on Multimedia
dcterms.bibliographicCitation.pagestart
6848
dcterms.bibliographicCitation.pageend
6863
dcterms.bibliographicCitation.volume
26
dcterms.bibliographicCitation.url
https://doi.org/10.1109/TMM.2024.3357198
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1941-0077
refubium.resourceType.provider
WoS-Alert