dc.contributor.author
Szabó, P. Bernát
dc.contributor.author
Schätzle, Zeno
dc.contributor.author
Entwistle, Michael T.
dc.contributor.author
Noé, Frank
dc.date.accessioned
2024-10-07T10:37:56Z
dc.date.available
2024-10-07T10:37:56Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44777
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44488
dc.description.abstract
We introduce several improvements to the penalty-based variational quantum Monte Carlo (VMC) algorithm for computing electronic excited states of Entwistle et al. [Nat. Commun. 14, 274 (2023)] and demonstrate that the accuracy of the updated method is competitive with other available excited-state VMC approaches. A theoretical comparison of the computational aspects of these algorithms is presented, where several benefits of the penalty-based method are identified. Our main contributions include an automatic mechanism for tuning the scale of the penalty terms, an updated form of the overlap penalty with proven convergence properties, and a new term that penalizes the spin of the wave function, enabling the selective computation of states with a given spin. With these improvements, along with the use of the latest self-attention-based ansatz, the penalty-based method achieves a mean absolute error below 1 kcal/mol for the vertical excitation energies of a set of 26 atoms and molecules, without relying on variance matching schemes. Considering excited states along the dissociation of the carbon dimer, the accuracy of the penalty-based method is on par with that of natural-excited-state (NES) VMC, while also providing results for additional sections of the potential energy surface, which were inaccessible with the NES method. Additionally, the accuracy of the penalty-based method is improved for a conical intersection of ethylene, with the predicted angle of the intersection agreeing well with both NES-VMC and multireference configuration interaction.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
penalty-based variational quantum Monte Carlo
en
dc.subject
Deep-Learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
An Improved Penalty-Based Excited-State Variational Monte Carlo Approach with Deep-Learning Ansatzes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.jctc.4c00678
dcterms.bibliographicCitation.journaltitle
Journal of Chemical Theory and Computation
dcterms.bibliographicCitation.number
18
dcterms.bibliographicCitation.pagestart
7922
dcterms.bibliographicCitation.pageend
7935
dcterms.bibliographicCitation.volume
20
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.jctc.4c00678
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
ACS Publications
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1549-9626