dc.contributor.author
Bryant, Patrick
dc.contributor.author
Noé, Frank
dc.date.accessioned
2024-09-03T11:18:27Z
dc.date.available
2024-09-03T11:18:27Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44772
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44483
dc.description.abstract
Proteins are dynamic molecules whose movements result in different conformations with different functions. Neural networks such as AlphaFold2 can predict the structure of single-chain proteins with conformations most likely to exist in the PDB. However, almost all protein structures with multiple conformations represented in the PDB have been used while training these models. Therefore, it is unclear whether alternative protein conformations can be genuinely predicted using these networks, or if they are simply reproduced from memory. Here, we train a structure prediction network, Cfold, on a conformational split of the PDB to generate alternative conformations. Cfold enables efficient exploration of the conformational landscape of monomeric protein structures. Over 50% of experimentally known nonredundant alternative protein conformations evaluated here are predicted with high accuracy (TM-score > 0.8).
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Biochemistry
en
dc.subject
Computational models
en
dc.subject
Machine learning
en
dc.subject
Protein structure predictions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Structure prediction of alternative protein conformations
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
7328
dcterms.bibliographicCitation.doi
10.1038/s41467-024-51507-2
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-51507-2
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723