dc.contributor.author
Tesler, Alexander B.
dc.contributor.author
Nurmi, Heikki A.
dc.contributor.author
Kolle, Stefan
dc.contributor.author
Prado, Lucia H.
dc.contributor.author
Karunakaran, Bhuvaneshwari
dc.contributor.author
Mazare, Anca
dc.contributor.author
Erceg, Ina
dc.contributor.author
Soares, Iris de Brito
dc.contributor.author
Sarau, George
dc.contributor.author
Christiansen, Silke H.
dc.date.accessioned
2024-08-14T13:32:13Z
dc.date.available
2024-08-14T13:32:13Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44571
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44283
dc.description.abstract
Non-wettable surfaces, especially those capable of passively trapping air in rough protrusions, can provide surface resilience to the detrimental effects of wetting-related phenomena. However, the development of such superhydrophobic surfaces with a long-lasting entrapped air layer, called plastron, is hampered by the lack of evaluation criteria and methods that can unambiguously distinguish between stable and metastable Cassie-Baxter wetting regimes. The information to evaluate the stability of the wetting regime is missing from the commonly used contact angle goniometry. Therefore, it is necessary to determine which surface features can be used as a signature to identify thermodynamically stable plastron. Here, we describe a methodology for evaluating the thermodynamic underwater stability of the Cassie-Baxter wetting regime of superhydrophobic surfaces by measuring the surface roughness, solid-liquid area fraction, and Young’s contact angle. The method allowed the prediction of passive plastron stability for over one year of continuous submersion, the impeding of mussel and barnacle adhesion, and inhibition of metal corrosion in seawater. Such submersion-stable superhydrophobicity, in which water is repelled by a stable passive air layer trapped between the solid substrate and the surrounding liquid for extended periods at ambient conditions, opens new avenues for science and technologies that require continuous contact of solids with aqueous media.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Predicting plastron thermodynamic stability for underwater superhydrophobicity
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
112
dcterms.bibliographicCitation.doi
10.1038/s43246-024-00555-8
dcterms.bibliographicCitation.journaltitle
Communications Materials
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s43246-024-00555-8
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2662-4443
refubium.resourceType.provider
WoS-Alert