dc.contributor.author
Hamara, Dominik
dc.contributor.author
Strungaru, Mara
dc.contributor.author
Massey, Jamie R.
dc.contributor.author
Remy, Quentin
dc.contributor.author
Chen, Xin
dc.contributor.author
Antonio, Guillermo Nava
dc.contributor.author
Santos, Obed Alves
dc.contributor.author
Hehn, Michel
dc.contributor.author
Evans, Richard F. L.
dc.contributor.author
Chantrell, Roy W.
dc.date.accessioned
2024-08-14T13:19:17Z
dc.date.available
2024-08-14T13:19:17Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44569
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44281
dc.description.abstract
An antiferromagnet emits spin currents when time-reversal symmetry is broken. This is typically achieved by applying an external magnetic field below and above the spin-flop transition or by optical pumping. In this work we apply optical pump-THz emission spectroscopy to study picosecond spin pumping from metallic FeRh as a function of temperature. Intriguingly we find that in the low-temperature antiferromagnetic phase the laser pulse induces a large and coherent spin pumping, while not crossing into the ferromagnetic phase. With temperature and magnetic field dependent measurements combined with atomistic spin dynamics simulations we show that the antiferromagnetic spin-lattice is destabilised by the combined action of optical pumping and picosecond spin-biasing by the conduction electron population, which results in spin accumulation. We propose that the amplitude of the effect is inherent to the nature of FeRh, particularly the Rh atoms and their high spin susceptibility. We believe that the principles shown here could be used to produce more effective spin current emitters. Our results also corroborate the work of others showing that the magnetic phase transition begins on a very fast picosecond timescale, but this timescale is often hidden by measurements which are confounded by the slower domain dynamics.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Magnetic properties
en
dc.subject
Magnetic materials
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Ultra-high spin emission from antiferromagnetic FeRh
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
4958
dcterms.bibliographicCitation.doi
10.1038/s41467-024-48795-z
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-48795-z
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert