dc.contributor.author
Kuroshima, Daisuke
dc.contributor.author
Kilgour, Michael
dc.contributor.author
Tuckerman, Mark E.
dc.contributor.author
Rogal, Jutta
dc.date.accessioned
2024-08-13T07:21:39Z
dc.date.available
2024-08-13T07:21:39Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44504
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44216
dc.description.abstract
Identifying local structural motifs and packing patterns of molecular solids is a challenging task for both simulation and experiment. We demonstrate two novel approaches to characterize local environments in different polymorphs of molecular crystals using learning models that employ either flexibly learned or handcrafted molecular representations. In the first case, we follow our earlier work on graph learning in molecular crystals, deploying an atomistic graph convolutional network combined with molecule-wise aggregation to enable per-molecule environmental classification. For the second model, we develop a new set of descriptors based on symmetry functions combined with a point-vector representation of the molecules, encoding information about the positions and relative orientations of the molecule. We demonstrate very high classification accuracy for both approaches on urea and nicotinamide crystal polymorphs and practical applications to the analysis of dynamical trajectory data for nanocrystals and solid–solid interfaces. Both architectures are applicable to a wide range of molecules and diverse topologies, providing an essential step in the exploration of complex condensed matter phenomena.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Machine Learning Classification
en
dc.subject
Local Environments
en
dc.subject
Molecular Crystals
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Machine Learning Classification of Local Environments in Molecular Crystals
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.jctc.4c00418
dcterms.bibliographicCitation.journaltitle
Journal of Chemical Theory and Computation
dcterms.bibliographicCitation.number
14
dcterms.bibliographicCitation.pagestart
6197
dcterms.bibliographicCitation.pageend
6206
dcterms.bibliographicCitation.volume
20
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.jctc.4c00418
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1549-9626
refubium.resourceType.provider
WoS-Alert