dc.contributor.author
Site, Luigi Delle
dc.contributor.author
Djurdjevac, Ana
dc.date.accessioned
2024-08-06T11:53:05Z
dc.date.available
2024-08-06T11:53:05Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44409
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44121
dc.description.abstract
We discuss the derivation of an effective Hamiltonian for open quantum many-particle systems. The aim is to define an operator that can be used for (molecular) simulations where, through the exchange of energy and matter with the surrounding environment (reservoir), the number of particles, n, becomes a variable of the problem. The Hamiltonian is formally derived from the Von Neumann equation; specifically, we derive an n-hierarchy of equations for the density matrix, rho<^>n , for near equilibrium situations. Such a hierarchy, in case of stationary equilibrium, delivers the standard grand canonical density matrix as it would be expected. We report that a similar Hamiltonian was conjectured, from empirical considerations, in the field of superconductivity. Thus our result also provide a formal basis for this long-standing hypothesis. Finally, an application is discussed for Path Integral simulations of molecular systems.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
open systems
en
dc.subject
quantum many-particle systems
en
dc.subject
Von Neumann equation
en
dc.subject
molecular dynamics schemes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
An effective Hamiltonian for the simulation of open quantum molecular systems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
255002
dcterms.bibliographicCitation.doi
10.1088/1751-8121/ad5088
dcterms.bibliographicCitation.journaltitle
Journal of Physics A: Mathematical and Theoretical
dcterms.bibliographicCitation.number
25
dcterms.bibliographicCitation.originalpublishername
IOP Publishing
dcterms.bibliographicCitation.volume
57
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1751-8121/ad5088
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1751-8121
refubium.resourceType.provider
WoS-Alert