dc.contributor.author
Quek, Yihui
dc.contributor.author
Stilck França, Daniel
dc.contributor.author
Khatri, Sumeet
dc.contributor.author
Meyer, Johannes Jakob
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2024-10-29T06:53:09Z
dc.date.available
2024-10-29T06:53:09Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44316
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44028
dc.description.abstract
Quantum error mitigation has been proposed as a means to combat unwanted and unavoidable errors in near-term quantum computing without the heavy resource overheads required by fault-tolerant schemes. Recently, error mitigation has been successfully applied to reduce noise in near-term applications. In this work, however, we identify strong limitations to the degree to which quantum noise can be effectively ‘undone’ for larger system sizes. Our framework rigorously captures large classes of error-mitigation schemes in use today. By relating error mitigation to a statistical inference problem, we show that even at shallow circuit depths comparable to those of current experiments, a superpolynomial number of samples is needed in the worst case to estimate the expectation values of noiseless observables, the principal task of error mitigation. Notably, our construction implies that scrambling due to noise can kick in at exponentially smaller depths than previously thought. Noise also impacts other near-term applications by constraining kernel estimation in quantum machine learning, causing an earlier emergence of noise-induced barren plateaus in variational quantum algorithms and ruling out exponential quantum speed-ups in estimating expectation values in the presence of noise or preparing the ground state of a Hamiltonian.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational science
en
dc.subject
Information theory and computation
en
dc.subject
Quantum information
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Exponentially tighter bounds on limitations of quantum error mitigation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41567-024-02536-7
dcterms.bibliographicCitation.journaltitle
Nature Physics
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
1648
dcterms.bibliographicCitation.pageend
1658
dcterms.bibliographicCitation.volume
20
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41567-024-02536-7
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1745-2473
dcterms.isPartOf.eissn
1745-2481