dc.contributor.author
Morr, Anna S.
dc.contributor.author
Nowicki, Marcin
dc.contributor.author
Bertalan, Gergely
dc.contributor.author
Vieira Silva, Rafaela
dc.contributor.author
Infante Duarte, Carmen
dc.contributor.author
Koch, Stefan Paul
dc.contributor.author
Boehm-Sturm, Philipp
dc.contributor.author
Krügel, Ute
dc.contributor.author
Braun, Jürgen
dc.contributor.author
Steiner, Barbara
dc.contributor.author
Käs, Josef A.
dc.contributor.author
Fuhs, Thomas
dc.contributor.author
Sack, Ingolf
dc.date.accessioned
2024-07-22T12:43:15Z
dc.date.available
2024-07-22T12:43:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44274
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43985
dc.description.abstract
The hippocampus is a very heterogeneous brain structure with different mechanical properties reflecting its functional variety. In particular, adult neurogenesis in rodent hippocampus has been associated with specific viscoelastic properties in vivo and ex vivo. Here, we study the microscopic mechanical properties of hippocampal subregions using ex vivo atomic force microscopy (AFM) in correlation with the expression of GFP in presence of the nestin promoter, providing a marker of neurogenic activity. We further use magnetic resonance elastography (MRE) to investigate whether in vivo mechanical properties reveal similar spatial patterns, however, on a much coarser scale. AFM showed that tissue stiffness increases with increasing distance from the subgranular zone (p= 0.0069), and that stiffness is 39% lower in GFP than non-GFP regions (p = 0.0004). Consistently, MRE showed that dentate gyrus is, on average, softer than Ammon's horn (shear wave speed = 3.2 +/- 0.2 m/s versus 4.4 +/- 0.3 m/s, p = 0.01) with another 3.4% decrease towards the subgranular zone (p = 0.0001). The marked reduction in stiffness measured by AFM in areas of high neurogenic activity is consistent with softer MRE values, indicating the sensitivity of macroscopic mechanical properties in vivo to micromechanical structures as formed by the neurogenic niche of the hippocampus.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Elasticity Imaging Techniques
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Mechanical properties of murine hippocampal subregions investigated by atomic force microscopy and in vivo magnetic resonance elastography
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
16723
dcterms.bibliographicCitation.doi
10.1038/s41598-022-21105-7
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.volume
12
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
36202964
dcterms.isPartOf.eissn
2045-2322