dc.contributor.author
Grier, Daniel
dc.contributor.author
Pashayan, Hakop
dc.contributor.author
Schaeffer, Luke
dc.date.accessioned
2024-07-05T11:42:45Z
dc.date.available
2024-07-05T11:42:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44154
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43864
dc.description.abstract
We consider the classical shadows task for pure states in the setting of both joint and independent measurements. The task is to measure few copies of an unknown pure state ρ in order to learn a classical description which suffices to later estimate expectation values of observables. Specifically, the goal is to approximate Tr(Oρ) for any Hermitian observable O to within additive error ϵ provided Tr(O2)≤B and ∥O∥=1. Our main result applies to the joint measurement setting, where we show ~Θ(√Bϵ−1+ϵ−2) samples of ρ are necessary and sufficient to succeed with high probability. The upper bound is a quadratic improvement on the previous best sample complexity known for this problem. For the lower bound, we see that the bottleneck is not how fast we can learn the state but rather how much any classical description of ρ can be compressed for observable estimation. In the independent measurement setting, we show that O(√Bdϵ−1+ϵ−2) samples suffice. Notably, this implies that the random Clifford measurements algorithm of Huang, Kueng, and Preskill, which is sample-optimal for mixed states, is not optimal for pure states. Interestingly, our result also uses the same random Clifford measurements but employs a different estimator.
en
dc.format.extent
34 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
classical shadows
en
dc.subject
sample-optimal
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Sample-optimal classical shadows for pure states
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
1373
dcterms.bibliographicCitation.doi
10.22331/q-2024-06-17-1373
dcterms.bibliographicCitation.journaltitle
Quantum
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.22331/q-2024-06-17-1373
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2521-327X
refubium.resourceType.provider
WoS-Alert