dc.contributor.author
Glahn, Imaine
dc.contributor.author
Haghofer, Andreas
dc.contributor.author
Donovan, Taryn A.
dc.contributor.author
Degasperi, Brigitte
dc.contributor.author
Bartel, Alexander
dc.contributor.author
Kreilmeier-Berger, Theresa
dc.contributor.author
Hyndman, Philip S.
dc.contributor.author
Janout, Hannah
dc.contributor.author
Assenmacher, Charles-Antoine
dc.contributor.author
Bartenschlager, Florian
dc.contributor.author
Bolfa, Pompei
dc.contributor.author
Dark, Michael J.
dc.contributor.author
Klang, Andrea
dc.contributor.author
Klopfleisch, Robert
dc.contributor.author
Merz, Sophie
dc.contributor.author
Richter, Barbara
dc.contributor.author
Schulman, F. Yvonne
dc.contributor.author
Ganz, Jonathan
dc.contributor.author
Scharinger, Josef
dc.contributor.author
Aubreville, Marc
dc.contributor.author
Winkler, Stephan M.
dc.contributor.author
Bertram, Christof A.
dc.date.accessioned
2024-07-01T13:37:13Z
dc.date.available
2024-07-01T13:37:13Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44045
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43754
dc.description.abstract
The integration of deep learning-based tools into diagnostic workflows is increasingly prevalent due to their efficiency and reproducibility in various settings. We investigated the utility of automated nuclear morphometry for assessing nuclear pleomorphism (NP), a criterion of malignancy in the current grading system in canine pulmonary carcinoma (cPC), and its prognostic implications. We developed a deep learning-based algorithm for evaluating NP (variation in size, i.e., anisokaryosis and/or shape) using a segmentation model. Its performance was evaluated on 46 cPC cases with comprehensive follow-up data regarding its accuracy in nuclear segmentation and its prognostic ability. Its assessment of NP was compared to manual morphometry and established prognostic tests (pathologists’ NP estimates (n = 11), mitotic count, histological grading, and TNM-stage). The standard deviation (SD) of the nuclear area, indicative of anisokaryosis, exhibited good discriminatory ability for tumor-specific survival, with an area under the curve (AUC) of 0.80 and a hazard ratio (HR) of 3.38. The algorithm achieved values comparable to manual morphometry. In contrast, the pathologists’ estimates of anisokaryosis resulted in HR values ranging from 0.86 to 34.8, with slight inter-observer reproducibility (k = 0.204). Other conventional tests had no significant prognostic value in our study cohort. Fully automated morphometry promises a time-efficient and reproducible assessment of NP with a high prognostic value. Further refinement of the algorithm, particularly to address undersegmentation, and application to a larger study population are required.
en
dc.format.extent
21 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
anisokaryosis
en
dc.subject
artificial intelligence
en
dc.subject
image processing
en
dc.subject
mitotic count
en
dc.subject
nuclear pleomorphism
en
dc.subject
pulmonary carcinoma
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.title
Automated Nuclear Morphometry: A Deep Learning Approach for Prognostication in Canine Pulmonary Carcinoma to Enhance Reproducibility
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
278
dcterms.bibliographicCitation.doi
10.3390/vetsci11060278
dcterms.bibliographicCitation.journaltitle
Veterinary Sciences
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/ 10.3390/vetsci11060278
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Veterinär-Epidemiologie und Biometrie
refubium.affiliation.other
Institut für Tierpathologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2306-7381