dc.contributor.author
Bej, Raju
dc.contributor.author
Nie, Chuanxiong
dc.contributor.author
Ludwig, Kai
dc.contributor.author
Kerkhoff, Yannic
dc.contributor.author
Pigaleva, Marina
dc.contributor.author
Adler, Julia Maria
dc.contributor.author
Page, Taylor M.
dc.contributor.author
Trimpert, Jakob
dc.contributor.author
Block, Stephan
dc.contributor.author
Kaufer, Benedikt B.
dc.contributor.author
Haag, Rainer
dc.date.accessioned
2024-08-21T11:14:52Z
dc.date.available
2024-08-21T11:14:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44032
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43741
dc.description.abstract
Mucus is a dynamic biological hydrogel, composed primarily of the glycoprotein mucin, exhibits unique biophysical properties and forms a barrier protecting cells against a broad-spectrum of viruses. Here, this work develops a polyglycerol sulfate-based dendronized mucin-inspired copolymer (MICP-1) with ≈10% repeating units of activated disulfide as cross-linking sites. Cryo-electron microscopy (Cryo-EM) analysis of MICP-1 reveals an elongated single-chain fiber morphology. MICP-1 shows potential inhibitory activity against many viruses such as herpes simplex virus 1 (HSV-1) and SARS-CoV-2 (including variants such as Delta and Omicron). MICP-1 produces hydrogels with viscoelastic properties similar to healthy human sputum and with tuneable microstructures using linear and branched polyethylene glycol-thiol (PEG-thiol) as cross-linkers. Single particle tracking microrheology, electron paramagnetic resonance (EPR) and cryo-scanning electron microscopy (Cryo-SEM) are used to characterize the network structures. The synthesized hydrogels exhibit self-healing properties, along with viscoelastic properties that are tuneable through reduction. A transwell assay is used to investigate the hydrogel's protective properties against viral infection against HSV-1. Live-cell microscopy confirms that these hydrogels can protect underlying cells from infection by trapping the virus, due to both network morphology and anionic multivalent effects. Overall, this novel mucin-inspired copolymer generates mucus-mimetic hydrogels on a multi-gram scale. These hydrogels can be used as models for disulfide-rich airway mucus research, and as biomaterials.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
broad-spectrum virus inhibition
en
dc.subject
live-cell microscopy
en
dc.subject
mucus-inspired hydrogels
en
dc.subject
self-healing hydrogels
en
dc.subject
single-particle tracking microrheology
en
dc.subject
transwell assay
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Mucus-Inspired Self-Healing Hydrogels: A Protective Barrier for Cells against Viral Infection
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2401745
dcterms.bibliographicCitation.doi
10.1002/adma.202401745
dcterms.bibliographicCitation.journaltitle
Advanced Materials
dcterms.bibliographicCitation.number
32
dcterms.bibliographicCitation.volume
36
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adma.202401745
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.affiliation.other
Institut für Virologie
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1521-4095