dc.contributor.author
Pan, Chenxu
dc.contributor.author
Reinert, Knut
dc.date.accessioned
2024-07-01T08:23:08Z
dc.date.available
2024-07-01T08:23:08Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44013
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43722
dc.description.abstract
Advances in sequencing technology have facilitated population-scale long-read structural variant (SV) detection. Arguably, one of the main challenges in population-scale analysis is developing effective computational pipelines. Here, we present a new filter-based pipeline for population-scale long-read SV detection. It better captures SV signals at an early stage than conventional assembly-based or alignment-based pipelines. Assessments in this work suggest that the filter-based pipeline helps better resolve intra-read rearrangements. Moreover, it is also more computationally efficient than conventional pipelines and thus may facilitate population-scale long-read applications.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Filter-based pipelines
en
dc.subject
Intra-read SV detection
en
dc.subject
Population-scale long-read applications
en
dc.subject
Generative model
en
dc.subject
Extended SAM/BAM
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Leaf: an ultrafast filter for population-scale long-read SV detection
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
155
dcterms.bibliographicCitation.doi
10.1186/s13059-024-03297-5
dcterms.bibliographicCitation.journaltitle
Genome Biology
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
25
dcterms.bibliographicCitation.url
https://doi.org/10.1186/s13059-024-03297-5
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1474-760X