dc.contributor.author
Künstner, Silvio
dc.contributor.author
McPeak, Joseph E.
dc.contributor.author
Chu, Anh
dc.contributor.author
Kern, Michal
dc.contributor.author
Dinse, Klaus-Peter
dc.contributor.author
Naydenov, Boris
dc.contributor.author
Fischer, Peter
dc.contributor.author
Anders, Jens
dc.contributor.author
Lips, Klaus
dc.date.accessioned
2024-06-27T05:50:11Z
dc.date.available
2024-06-27T05:50:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43992
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43701
dc.description.abstract
The vanadium redox flow battery (VRFB) is considered a promising candidate for large-scale energy storage in the transition from fossil fuels to renewable energy sources. VRFBs store energy by electrochemical reactions of different electroactive species dissolved in electrolyte solutions. The redox couples of VRFBs are VO2+/VO2+ and V2+/V3+, the ratio of which to the total vanadium content determines the state of charge (SOC). V(iv) and V(ii) are paramagnetic half-integer spin species detectable and quantifiable with electron paramagnetic resonance spectroscopy (EPR). Common commercial EPR spectrometers, however, employ microwave cavity resonators which necessitate the use of large electromagnets, limiting their application to dedicated laboratories. For an SOC monitoring device for VRFBs, a small, cost-effective submersible EPR spectrometer, preferably with a permanent magnet, is desirable. The EPR-on-a-Chip (EPRoC) spectrometer miniaturises the complete EPR spectrometer onto a single microchip by utilising the coil of a voltage-controlled oscillator as both microwave source and detector. It is capable of sweeping the frequency while the magnetic field is held constant enabling the use of small permanent magnets. This drastically reduces the experimental complexity of EPR. Hence, the EPRoC fulfils the requirements for an SOC sensor. We, therefore, evaluate the potential for utilisation of an EPRoC dipstick spectrometer as an operando and continuously online monitor for the SOC of VRFBs. Herein, we present quantitative proof-of-principle submersible EPRoC experiments on variably charged vanadium electrolyte solutions. EPR data obtained with a commercial EPR spectrometer are in good agreement with the EPRoC data.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
vanadium redox flow batteries
en
dc.subject
state of charge
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Monitoring the state of charge of vanadium redox flow batteries with an EPR-on-a-Chip dipstick sensor
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-06-27T02:51:45Z
dcterms.bibliographicCitation.doi
10.1039/d4cp00373j
dcterms.bibliographicCitation.journaltitle
Physical Chemistry Chemical Physics
dcterms.bibliographicCitation.number
25
dcterms.bibliographicCitation.pagestart
17785
dcterms.bibliographicCitation.pageend
17795
dcterms.bibliographicCitation.volume
26
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D4CP00373J
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1463-9076
dcterms.isPartOf.eissn
1463-9084
refubium.resourceType.provider
DeepGreen