dc.contributor.author
Bielow, Chris
dc.contributor.author
Hoffmann, Nils
dc.contributor.author
Jimenez-Morales, David
dc.contributor.author
Bossche, Tim van den
dc.contributor.author
Vizcaíno, Juan Antonio
dc.contributor.author
Tabb, David L.
dc.contributor.author
Bittremieux, Wout
dc.contributor.author
Walzer, Mathias
dc.date.accessioned
2024-08-14T12:53:08Z
dc.date.available
2024-08-14T12:53:08Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43982
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43691
dc.description.abstract
Mass spectrometry is a powerful technique for analyzing molecules in complex biological samples. However, inter- and intralaboratory variability and bias can affect the data due to various factors, including sample handling and preparation, instrument calibration and performance, and data acquisition and processing. To address this issue, the Quality Control (QC) working group of the Human Proteome Organization’s Proteomics Standards Initiative has established the standard mzQC file format for reporting and exchanging information relating to data quality. mzQC is based on the JavaScript Object Notation (JSON) format and provides a lightweight yet versatile file format that can be easily implemented in software. Here, we present open-source software libraries to process mzQC data in three programming languages: Python, using pymzqc; R, using rmzqc; and Java, using jmzqc. The libraries follow a common data model and provide shared functionalities, including the (de)serialization and validation of mzQC files. We demonstrate use of the software libraries in a workflow for extracting, analyzing, and visualizing QC metrics from different sources. Additionally, we show how these libraries can be integrated with each other, with existing software tools, and in automated workflows for the QC of mass spectrometry data. All software libraries are available as open source under the MS-Quality-Hub organization on GitHub (https://github.com/MS-Quality-Hub).
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Mass spectrometry
en
dc.subject
Peptide identification
en
dc.subject
Peptides and proteins
en
dc.subject
Protein identification
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Communicating Mass Spectrometry Quality Information in mzQC with Python, R, and Java
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/jasms.4c00174
dcterms.bibliographicCitation.journaltitle
Journal of the American Society for Mass Spectrometry
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
1875
dcterms.bibliographicCitation.pageend
1882
dcterms.bibliographicCitation.volume
35
dcterms.bibliographicCitation.url
https://doi.org/10.1021/jasms.4c00174
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.funding
ACS Publications
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1879-1123