dc.contributor.author
Azoua, Mohammed
dc.contributor.author
Azouani, Abderrahim
dc.contributor.author
Hafidi, Imad
dc.date.accessioned
2024-06-20T07:57:51Z
dc.date.available
2024-06-20T07:57:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43892
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43602
dc.description.abstract
Medical treatment, vaccination, and quarantine are the most efficacious controls in preventing the spread of contagious epidemics such as COVID-19. In this paper, we demonstrate the global stability of the endemic and disease-free equilibrium by using the Lyapunov function. Moreover, we apply the three measures to minimize the density of infected people and also reduce the cost of controls. Furthermore, we use the Pontryagin Minimum Principle in order to characterize the optimal controls. Finally, we execute some numerical simulations to approve and verify our theoretical results using the fourth order Runge-Kutta approximation through Matlab.
en
dc.format.extent
24 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
epidemiological models
en
dc.subject
optimal control
en
dc.subject
global stability
en
dc.subject
numerical simulation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Optimal control and global stability of the SEIQRS epidemic model
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
17
dcterms.bibliographicCitation.doi
10.28919/cmbn/7880
dcterms.bibliographicCitation.journaltitle
Communications in Mathematical Biology and Neuroscience
dcterms.bibliographicCitation.url
https://doi.org/10.28919/cmbn/7880
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2052-2541
refubium.resourceType.provider
WoS-Alert