dc.contributor.author
Oehring, Robert
dc.contributor.author
Ramasetti, Nikitha
dc.contributor.author
Ng, Sharlyn
dc.contributor.author
Roller, Roland
dc.contributor.author
Thomas, Philippe
dc.contributor.author
Winter, Axel
dc.contributor.author
Maurer, Max
dc.contributor.author
Moosburner, Simon
dc.contributor.author
Raschzok, Nathanael
dc.contributor.author
Kamali, Can
dc.contributor.author
Pratschke, Johann
dc.contributor.author
Benzing, Christian
dc.contributor.author
Krenzien, Felix
dc.date.accessioned
2024-06-03T12:28:49Z
dc.date.available
2024-06-03T12:28:49Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43739
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43454
dc.description.abstract
Background: For therapy planning in cancer patients multidisciplinary team meetings (MDM) are mandatory. Due to the high number of cases being discussed and significant workload of clinicians, Clinical Decision Support System (CDSS) may improve the clinical workflow.
Methods: This review and meta-analysis aims to provide an overview of the systems utilized and evaluate the correlation between a CDSS and MDM.
Results: A total of 31 studies were identified for final analysis. Analysis of different cancers shows a concordance rate (CR) of 72.7% for stage I-II and 73.4% for III-IV. For breast carcinoma, CR for stage I-II was 72.8% and for III-IV 84.1%, P≤ 0.00001. CR for colorectal carcinoma is 63% for stage I-II and 67% for III-IV, for gastric carcinoma 55% and 45%, and for lung carcinoma 85% and 83% respectively, all P>0.05. Analysis of SCLC and NSCLC yields a CR of 94,3% and 82,7%, P=0.004 and for adenocarcinoma and squamous cell carcinoma in lung cancer a CR of 90% and 86%, P=0.02.
Conclusion: CDSS has already been implemented in clinical practice, and while the findings suggest that its use is feasible for some cancers, further research is needed to fully evaluate its effectiveness.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
artificial intelligence
en
dc.subject
multidisciplinary team meetings
en
dc.subject
clinical decision support system
en
dc.subject
machine learning
en
dc.subject
concordance between CDSS and MDS
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Use and accuracy of decision support systems using artificial intelligence for tumor diseases: a systematic review and meta-analysis
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
1224347
dcterms.bibliographicCitation.doi
10.3389/fonc.2023.1224347
dcterms.bibliographicCitation.journaltitle
Frontiers in Oncology
dcterms.bibliographicCitation.originalpublishername
Frontiers Media SA
dcterms.bibliographicCitation.volume
13
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
37860189
dcterms.isPartOf.eissn
2234-943X