dc.contributor.author
Taie Semiromi, Majid
dc.contributor.author
Koch, Manfred
dc.date.accessioned
2024-08-21T10:06:53Z
dc.date.available
2024-08-21T10:06:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43729
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43444
dc.description.abstract
Downscaling of daily precipitation from Global Circulation Models (GCMs)-predictors at a station level, especially in arid and semi-arid regions, has remained a formidable challenge yet. The current study aims at proposing a coupled model of Discrete Wavelet Transform (DWT), Artificial Neural Networks (ANNs), and Quantile Mapping (QM) for statistical downscaling of daily precipitation. Given the historic (1978–2005) and future (2006–2100) predictors of eight-selected GCMs under Representative Concentration Pathways (RCPs) 2.6, 4.5, and 8.5, a viable DWT-ANN model was developed for each station. Subsequently, we linked QM to DWT-ANN for bias correction and drizzle effect postprocessing of the DWT-ANN-historic/future projected precipitation. The skill of DWT-ANN-QM was demonstrated using various evaluation metrics, including Taylor diagram, Quantile–Quantile plot, Empirical Cumulative Distribution Function, and wet/dry spell analysis. We appraise the efficacy of the coupled model at 12 weather stations over the Gharehsoo River Basin (GRB) in northwestern Iran. Compared to the observed wet/dry spells, the dry-spells were better simulated via DWT-ANN-QM rather than the wet-spells wherein length and exceedance probability of the spells were overestimated. Results indicated that the future precipitation across the GRB will rise, on average, from 10 to 17% depending on weather station. Seasonal spatial distribution of the middle future (2041–2070) precipitation illustrated that an increase for fall and winter, especially, is expected, whereas the amount of the future spring and summer precipitation is projected to be declined. Having been developed and tested in a semi-arid basin, the efficacy of the coupled model should be further assessed in more humid climates.
en
dc.format.extent
31 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
precipitation
en
dc.subject
northwestern Iran
en
dc.subject
hybrid model
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Statistical downscaling of precipitation in northwestern Iran using a hybrid model of discrete wavelet transform, artificial neural networks, and quantile mapping
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00704-024-05033-2
dcterms.bibliographicCitation.journaltitle
Theoretical and Applied Climatology
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.pagestart
6591
dcterms.bibliographicCitation.pageend
6621
dcterms.bibliographicCitation.volume
155
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00704-024-05033-2
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1434-4483