dc.contributor.author
Moore, Jo
dc.contributor.author
Piazolo, Sandra
dc.contributor.author
Beinlich, Andreas
dc.contributor.author
Austrheim, Håkon
dc.contributor.author
Putnis, Andrew
dc.date.accessioned
2024-06-03T08:02:39Z
dc.date.available
2024-06-03T08:02:39Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43728
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43443
dc.description.abstract
The initiation of ductile shear zones commonly occurs spatially associated with fluid-rock reactions along brittle precursors. In many cases the relative timing of fracturing, fluid infiltration, reaction, and recrystallisation is unclear, making it difficult to disentangle mechanisms of shear zone initiation from subsequent deformation and recrystallisation. Here we present the study of the transition from a dry plagioclase-diopside-garnet-scapolite host granulite-facies lithology to (1) a low strain amphibolite-facies rock, and (2) a transition from low strain to high strain amphibolite-facies lithologies. Hydration of the granulite-facies precursor at amphibolite-facies conditions produces an assemblage comprised dominantly of plagioclase-amphibole-zoisite-clinozoisite-kyanite-scapolite-quartz. Detailed study of plagioclase chemistry and microstructures across these two transitions using Electron Backscatter Diffraction (EBSD) and Wavelength Dispersive Spectrometry (WDS) allows us to assess the degree of coupling between deformation and fluid-rock reaction across the outcrop. Plagioclase behaves dominantly in a brittle manner at the hydration interface and so the initial weakening of the rock is attributed to grain size reduction caused by fracture damage and fluid infiltration at amphibolite-facies conditions. Extensive fracturing-induced grain size reduction locally increases permeability and allows for continuing plagioclase and secondary mineral growth during shear. Based on plagioclase microstructures, such as, an inherited but dispersed crystallographic preferred orientation (CPO), truncation of chemical zoning, and the dominance of fine (5–150 µm), slightly elongate, polygonal grains we conclude that deformation is dominantly facilitated by dissolution–precipitation creep assisted by grain boundary sliding in the shear zone.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Shear localisation
en
dc.subject
Dissolution–precipitation creep
en
dc.subject
Plagioclase deformation
en
dc.subject
Brittle precursor
en
dc.subject
Amphibolite-facies
en
dc.subject
Fluid influx
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Brittle initiation of dissolution–precipitation creep in plagioclase-rich rocks: insights from the Bergen arcs, Norway
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
61
dcterms.bibliographicCitation.doi
10.1007/s00410-024-02141-0
dcterms.bibliographicCitation.journaltitle
Contributions to Mineralogy and Petrology
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.volume
179
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00410-024-02141-0
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0967