dc.contributor.author
Frank, Marius S.
dc.contributor.author
Artiukhin, Denis G.
dc.contributor.author
Lee, Tsung-Han
dc.contributor.author
Yao, Yongxin
dc.contributor.author
Barros, Kipton
dc.contributor.author
Christiansen, Ove
dc.contributor.author
Lanata, Nicola
dc.date.accessioned
2024-05-21T12:02:01Z
dc.date.available
2024-05-21T12:02:01Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43639
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43354
dc.description.abstract
Quantum embedding (QE) methods such as the ghost Gutzwiller approximation (gGA) offer a powerful approach to simulating strongly correlated systems, but come with the computational bottleneck of computing the ground state of an auxiliary embedding Hamiltonian (EH) iteratively. In this work, we introduce an active learning (AL) framework integrated within the gGA to address this challenge. The methodology is applied to the single-band Hubbard model and results in a significant reduction in the number of instances where the EH must be solved. Through a principal component analysis (PCA), we find that the EH parameters form a low-dimensional structure that is largely independent of the geometric specifics of the systems, especially in the strongly correlated regime. Our AL strategy enables us to discover this low-dimensionality structure on the fly, while leveraging it for reducing the computational cost of gGA, laying the groundwork for more efficient simulations of complex strongly correlated materials.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Strongly correlated systems
en
dc.subject
Machine learning
en
dc.subject
Many-body techniques
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Active learning approach to simulations of strongly correlated matter with the ghost Gutzwiller approximation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
013242
dcterms.bibliographicCitation.doi
10.1103/PhysRevResearch.6.013242
dcterms.bibliographicCitation.journaltitle
Physical Review Research
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevResearch.6.013242
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2643-1564
refubium.resourceType.provider
WoS-Alert