dc.contributor.author
Araújo, Pedro
dc.contributor.author
Martins, Taísa
dc.contributor.author
Mattos, Letícia
dc.contributor.author
Mendonça, Walner
dc.contributor.author
Moreira, Luiz
dc.contributor.author
Mota, Guilherme O.
dc.date.accessioned
2024-05-21T06:47:17Z
dc.date.available
2024-05-21T06:47:17Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43611
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43326
dc.description.abstract
For graphs G,H, we write Grb⟶H if for every proper edge-coloring of G there is a rainbow copy of H, i.e., a copy where no color appears more than once. Kohayakawa, Konstadinidis and the last author proved that the threshold for G(n,p)rb⟶H is at most n−1/m2(H). Previous results have matched the lower bound for this anti-Ramsey threshold for cycles and complete graphs with at least 5 vertices. Kohayakawa, Konstadinidis and the last author also presented an infinite family of graphs H for which the anti-Ramsey threshold is asymptotically smaller than n−1/m2(H). In this paper, we devise a framework that provides a richer family of such graphs.
en
dc.format.extent
21 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nd/4.0/
dc.subject
Anti-Ramsey threshold
en
dc.subject
non-balanced graphs
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
On the Anti-Ramsey Threshold for Non-Balanced Graphs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
11449
dcterms.bibliographicCitation.doi
10.37236/11449
dcterms.bibliographicCitation.journaltitle
The Electronic Journal of Combinatorics
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
31
dcterms.bibliographicCitation.url
https://doi.org/10.37236/11449
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1077-8926
refubium.resourceType.provider
WoS-Alert