dc.contributor.author
Chen, Ziliang
dc.contributor.author
Mebs, Stefan
dc.contributor.author
Mondal, Indranil
dc.contributor.author
Yang, Hongyuan
dc.contributor.author
Dau, Holger
dc.contributor.author
Kang, Zhenhui
dc.contributor.author
Haumann, Michael
dc.contributor.author
Ghosh, Suptish
dc.contributor.author
Cen, Wanglai
dc.contributor.author
Driess, Matthias
dc.date.accessioned
2024-10-07T08:04:23Z
dc.date.available
2024-10-07T08:04:23Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43583
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43299
dc.description.abstract
Transition-metal nanoparticles hold great promise as electrocatalysts for alkaline hydrogen evolution reaction (HER), however, addressing the simultaneous challenges of ensuring sufficient active sites, promoting favorable water dissociation, and optimizing binding energy toward hydrogen intermediates remains a formidable task. To overcome these hurdles, a novel gaseous hydrogen engineering strategy is proposed by in situ embedding cobalt nanoparticles within a samarium hydride matrix (Co/SmH2) via hydrogen-induced disproportionation of SmCo5 particles for efficient alkaline HER. The as-designed Co/SmH2 delivered an overpotential as low as 252 mV at 100 mA cm−2, surpassing the performance of pristine Co by 100 mV. Notably, this catalyst lasts remarkably long maintaining a durability at ≈500 mA cm−2 for 120 h. A combination of in situ Raman spectroscopy, in situ X-ray absorption spectroscopy, density functional theory calculation and post-HER characterizations unambiguously unveiled that the surface SmH2 transforms into samarium (hydr)oxide during electrocatalysis. This transformation not only inhibits the aggregation of the ultrafine cobalt nanoparticles but also significantly enhances the water dissociation and optimizes the binding energy of active cobalt species toward hydrogen intermediate, resulting in concurrent improvement of kinetics, thermodynamics, and stability of the HER process.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
alkaline hydrogen evolution
en
dc.subject
disproportionation
en
dc.subject
gaseous hydrogen engineering
en
dc.subject
phase reconstruction
en
dc.subject
rare earth-transition metal intermetallics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Hydrogen-Induced Disproportionation of Samarium-Cobalt Intermetallics Enabling Promoted Hydrogen Evolution Reaction Activity and Durability in Alkaline Media
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2402699
dcterms.bibliographicCitation.doi
10.1002/adfm.202402699
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
38
dcterms.bibliographicCitation.volume
34
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202402699
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
WoS-Alert