dc.contributor.author
O'Connor, Eoin
dc.contributor.author
Campbell, Steve
dc.contributor.author
Landi, Gabriel T.
dc.date.accessioned
2024-05-16T08:39:04Z
dc.date.available
2024-05-16T08:39:04Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43582
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43298
dc.description.abstract
We consider the impact that temporal correlations in the measurement statistics can have on the achievable precision in a sequential metrological protocol. In this setting, and for a single quantum probe, we establish that it is the transitions between the measurement basis states that plays the most significant role in determining the precision, with the resulting conditional Fisher information being interpretable as a rate of information acquisition. Projective measurements are shown to elegantly demonstrate this in two disparate estimation settings. Firstly, in determining the temperature of an environment and, secondly, to ascertain a parameter of the system Hamiltonian. In both settings we show that the sequential estimation approach can provide a useful method to enhance the achievable precision.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Fisher information
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Fisher information rates in sequentially measured quantum systems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
033048
dcterms.bibliographicCitation.doi
10.1088/1367-2630/ad345c
dcterms.bibliographicCitation.journaltitle
New Journal of Physics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
26
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1367-2630/ad345c
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1367-2630
refubium.resourceType.provider
WoS-Alert