dc.contributor.author
Gruber, Maximilian
dc.date.accessioned
2024-06-03T10:07:14Z
dc.date.available
2024-06-03T10:07:14Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43581
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43297
dc.description.abstract
Large scale sensor networks form an important part of the Industrial Internet of Things.
To maintain the operation of such networks over time, quality of the sensor readings needs to be ensured.
This leads to the development of a metrological traceable in-situ calibration method based on a Bayesian framework which leverages local sensor redundancy.
Furthermore, automation of such in-situ calibration tasks is a key feature.
To this end, an extension of existing sensor-related ontologies is proposed to cover relevant metrological terms.
Sensor self-descriptions based on these knowledge representations allow for support of in-situ calibration by finding suitable reference sensors and initialization the mathematical method presented here.
The mathematical method is evaluated in simulation studies against a state of the art in-situ calibration.
The evaluation results show good estimation performance in cases of time-depending input signals or sensors of comparable uncertainty levels, but also reveal higher computational costs.
The developed ontologies are evaluated by a corpus comparison, ontology metrics as well as logical checks of the taxonomic backbone and indicate a good agreement with existing ontology quality standards.
en
dc.format.extent
xviii, 177 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
co-calibration
en
dc.subject
uncertainty evaluation
en
dc.subject.ddc
300 Sozialwissenschaften::380 Handel, Kommunikation, Verkehr::389 Metrologie, Normung
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::519 Wahrscheinlichkeiten, angewandte Mathematik
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::000 Informatik, Informationswissenschaft, allgemeine Werke
dc.title
Consensus-based Online Co-Calibration for Networks of Homogeneous Sensors in IIoT Environments under Consideration of Semantic Knowledge
dc.contributor.gender
male
dc.contributor.firstReferee
Paschke, Adrian
dc.contributor.furtherReferee
Bär, Markus
dc.date.accepted
2024-03-01
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-43581-9
refubium.affiliation
Mathematik und Informatik
refubium.isSupplementedBy.url
https://github.com/mgrub/phd_sensor_simulation
refubium.isSupplementedBy.url
https://github.com/mgrub/phd_semantic_init
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access