dc.contributor.author
Burr, David J.
dc.contributor.author
Drauschke, Janina
dc.contributor.author
Kanevche, Katerina
dc.contributor.author
Kümmel, Steffen
dc.contributor.author
Stryhanyuk, Hryhoriy
dc.contributor.author
Heberle, Joachim
dc.contributor.author
Perfumo, Amedea
dc.contributor.author
Elsaesser, Andreas
dc.date.accessioned
2024-09-16T08:13:37Z
dc.date.available
2024-09-16T08:13:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43486
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43203
dc.description.abstract
This study utilizes nanoscale Fourier transform infrared spectroscopy (nanoFTIR) to perform stable isotope probing (SIP) on individual bacteria cells cultured in the presence of 13C-labelled glucose. SIP-nanoFTIR simultaneously quantifies single-cell metabolism through infrared spectroscopy and acquires cellular morphological information via atomic force microscopy. The redshift of the amide I peak corresponds to the isotopic enrichment of newly synthesized proteins. These observations of single-cell translational activity are comparable to those of conventional methods, examining bulk cell numbers. Observing cells cultured under conditions of limited carbon, SIP- nanoFTIR is used to identify environmentally-induced changes in metabolic heterogeneity and cellular morphology. Individuals outcompeting their neighboring cells will likely play a disproportionately large role in shaping population dynamics during adverse conditions or environmental fluctuations. Additionally, SIP-nanoFTIR enables the spectroscopic differentiation of specific cellular growth phases. During cellular replication, subcellular isotope distribution becomes more homogenous, which is reflected in the spectroscopic features dependent on the extent of 13C-13C mode coupling or to specific isotopic symmetries within protein secondary structures. As SIP-nanoFTIR captures single-cell metabolism, environmentally-induced cellular processes, and subcellular isotope localization, this technique offers widespread applications across a variety of disciplines including microbial ecology, biophysics, biopharmaceuticals, medicinal science, and cancer research.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
hyperspectral imaging
en
dc.subject
metabolic heterogeneity
en
dc.subject
stable-isotope probing-nanoFTIR
en
dc.subject
subcellular resolution
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Stable Isotope Probing-nanoFTIR for Quantitation of Cellular Metabolism and Observation of Growth-Dependent Spectral Features
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2400289
dcterms.bibliographicCitation.doi
10.1002/smll.202400289
dcterms.bibliographicCitation.journaltitle
Small
dcterms.bibliographicCitation.number
36
dcterms.bibliographicCitation.volume
20
dcterms.bibliographicCitation.url
https://doi.org/10.1002/smll.202400289
refubium.affiliation
Physik
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1613-6829