dc.contributor.author
Koltai, Péter
dc.contributor.author
Kunde, Philipp
dc.date.accessioned
2024-05-07T10:11:40Z
dc.date.available
2024-05-07T10:11:40Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43472
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43189
dc.description.abstract
The least squares linear filter, also called the Wiener filter, is a popular tool to predict the next element(s) of time series by linear combination of time-delayed observations. We consider observation sequences of deterministic dynamics, and ask: Which pairs of observation function and dynamics are predictable? If one allows for nonlinear mappings of time-delayed observations, then Takens’ well-known theorem implies that a set of pairs, large in a specific topological sense, exists for which an exact prediction is possible. We show that a similar statement applies for the linear least squares filter in the infinite-delay limit, by considering the forecast problem for invertible measure-preserving maps and the Koopman operator on square-integrable functions.
en
dc.format.extent
35 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Koopman–Takens Theorem
en
dc.subject
Linear Least Squares Prediction
en
dc.subject
Nonlinear Time Series
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
A Koopman–Takens Theorem: Linear Least Squares Prediction of Nonlinear Time Series
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
120
dcterms.bibliographicCitation.doi
10.1007/s00220-024-05004-8
dcterms.bibliographicCitation.journaltitle
Communications in Mathematical Physics
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
405
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00220-024-05004-8
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0916