dc.contributor.author
Sehit, Ekin
dc.contributor.author
Yao, Guiyang
dc.contributor.author
Battocchio, Giovanni
dc.contributor.author
Radfar, Rahil
dc.contributor.author
Trimpert, Jakob
dc.contributor.author
Mroginski, Maria A.
dc.contributor.author
Süssmuth, Roderich
dc.contributor.author
Altintas, Zeynep
dc.date.accessioned
2024-05-06T11:07:18Z
dc.date.available
2024-05-06T11:07:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43448
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43165
dc.description.abstract
Detection of pathogenic viruses for point-of-care applications has attracted great attention since the COVID-19 pandemic. Current virus diagnostic tools are laborious and expensive, while requiring medically trained staff. Although user-friendly and cost-effective biosensors are utilized for virus detection, many of them rely on recognition elements that suffer major drawbacks. Herein, computationally designed epitope-imprinted polymers (eIPs) are conjugated with a portable piezoelectric sensing platform to establish a sensitive and robust biosensor for the human pathogenic adenovirus (HAdV). The template epitope is selected from the knob part of the HAdV capsid, ensuring surface accessibility. Computational simulations are performed to evaluate the conformational stability of the selected epitope. Further, molecular dynamics simulations are executed to investigate the interactions between the epitope and the different functional monomers for the smart design of eIPs. The HAdV epitope is imprinted via the solid-phase synthesis method to produce eIPs using in silico-selected ingredients. The synthetic receptors show a remarkable detection sensitivity (LOD: 102 pfu mL–1) and affinity (dissociation constant (Kd): 6.48 × 10–12 M) for HAdV. Moreover, the computational eIPs lead to around twofold improved binding behavior than the eIPs synthesized with a well-established conventional recipe. The proposed computational strategy holds enormous potential for the intelligent design of ultrasensitive imprinted polymer binders.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
virus detection
en
dc.subject
epitope imprinting
en
dc.subject
molecular dynamics
en
dc.subject
in silico-designed epitope-mediatedadenovirus receptors
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Computationally Designed Epitope-Mediated Imprinted Polymers versus Conventional Epitope Imprints for the Detection of Human Adenovirus in Water and Human Serum Samples
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-04-30T02:59:58Z
dcterms.bibliographicCitation.doi
10.1021/acssensors.3c02374
dcterms.bibliographicCitation.journaltitle
ACS Sensors
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.originalpublishername
American Chemical Society
dcterms.bibliographicCitation.pagestart
1831
dcterms.bibliographicCitation.pageend
1841
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acssensors.3c02374
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Virologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2379-3694
refubium.resourceType.provider
DeepGreen