dc.contributor.author
Gómez Maqueo Anaya, Sofía
dc.contributor.author
Althausen, Dietrich
dc.contributor.author
Faust, Matthias
dc.contributor.author
Baars, Holger
dc.contributor.author
Heinold, Bernd
dc.contributor.author
Hofer, Julian
dc.contributor.author
Tegen, Ina
dc.contributor.author
Ansmann, Albert
dc.contributor.author
Engelmann, Ronny
dc.contributor.author
Skupin, Annett
dc.contributor.author
Heese, Birgit
dc.contributor.author
Schepanski, Kerstin
dc.date.accessioned
2024-05-06T10:13:36Z
dc.date.available
2024-05-06T10:13:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43440
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43157
dc.description.abstract
Mineral dust aerosols are composed of a complex assemblage of various minerals depending on the region in which they originated. Given the different mineral composition of desert dust aerosols, different physicochemical properties and therefore varying climate effects are expected.
Despite the known regional variations in mineral composition, chemical transport models typically assume that mineral dust aerosols have uniform composition. This study adds, for the first time, mineralogical information to the mineral dust emission scheme used in the chemical transport model COSMO–MUSCAT. We provide a detailed description of the implementation of the mineralogical database, GMINER (Nickovic et al., 2012), together with a specific set of physical parameterizations in the model's mineral dust emission module, which led to a general improvement of the model performance when comparing the simulated mineral dust aerosols with measurements over the Sahara region for January–February 2022.
The simulated mineral dust aerosol vertical distribution is tested by a comparison with aerosol lidar measurements from the lidar system PollyXT, located at Cape Verde. For a lofted mineral dust aerosol layer on 2 February at 05:00 UTC the lidar retrievals yield a dust mass concentration peak of 156 µg m−3, while the model calculates the mineral dust peak at 136 µg m−3. The results highlight the possibility of using the model with resolved mineral dust composition for interpretation of the lidar measurements since a higher absorption in the UV–Vis wavelengths is correlated with particles having a higher hematite content. Additionally, the comparison with in situ mineralogical measurements of dust aerosol particles shows that more of them are needed for model evaluation.
en
dc.format.extent
25 Seiten
dc.rights
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
implementation
en
dc.subject
dust mineralogy
en
dc.subject
COSMO5.05-MUSCAT
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
The implementation of dust mineralogy in COSMO5.05-MUSCAT
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-04-27T03:02:02Z
dcterms.bibliographicCitation.doi
10.5194/gmd-17-1271-2024
dcterms.bibliographicCitation.journaltitle
Geoscientific Model Development
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.originalpublishername
Copernicus Publications
dcterms.bibliographicCitation.originalpublisherplace
Göttingen, Germany
dcterms.bibliographicCitation.pagestart
1271
dcterms.bibliographicCitation.pageend
1295
dcterms.bibliographicCitation.volume
17
dcterms.bibliographicCitation.url
https://doi.org/10.5194/gmd-17-1271-2024
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1991-9603
refubium.resourceType.provider
DeepGreen