dc.contributor.author
Greten, Lara
dc.contributor.author
Salzwedel, Robert
dc.contributor.author
Göde, Tobias
dc.contributor.author
Greten, David
dc.contributor.author
Reich, Stephanie
dc.contributor.author
Hughes, Stephen
dc.contributor.author
Selig, Malte
dc.contributor.author
Knorr, Andreas
dc.date.accessioned
2024-05-06T09:40:34Z
dc.date.available
2024-05-06T09:40:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43436
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43153
dc.description.abstract
Monolayers of transition metal dichalcogenides (TMDCs) are direct-gap semiconductors with strong light–matter interactions featuring tightly bound excitons, while plasmonic crystals (PCs), consisting of metal nanoparticles that act as meta-atoms, exhibit collective plasmon modes and allow one to tailor electric fields on the nanoscale. Recent experiments show that TMDC-PC hybrids can reach the strong-coupling limit between excitons and plasmons, forming new quasiparticles, so-called plexcitons. To describe this coupling theoretically, we develop a self-consistent Maxwell-Bloch theory for TMDC-PC hybrid structures, which allows us to compute the scattered light in the near- and far-fields explicitly and provide guidance for experimental studies. One of the key findings of the developed theory is the necessity to differentiate between bright and originally momentum-dark excitons. Our calculations reveal a spectral splitting signature of strong coupling of more than 100 meV in gold-MoSe2 structures with 30 nm nanoparticles, manifesting in a hybridization of the plasmon mode with momentum-dark excitons into two effective plexcitonic bands. The semianalytical theory allows us to directly infer the characteristic asymmetric line shape of the hybrid spectra in the strong coupling regime from the energy distribution of the momentum-dark excitons. In addition to the hybridized states, we find a remaining excitonic mode with significantly smaller coupling to the plasmonic near-field, emitting directly into the far-field. Thus, hybrid spectra in the strong coupling regime can contain three emission peaks.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
2D semiconductors
en
dc.subject
transition metal dichalcogenides
en
dc.subject
plasmonic crystals
en
dc.subject
strong coupling
en
dc.subject
light–matter interactions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Strong Coupling of Two-Dimensional Excitons and Plasmonic Photonic Crystals: Microscopic Theory Reveals Triplet Spectra
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-04-26T23:18:38Z
dcterms.bibliographicCitation.doi
10.1021/acsphotonics.3c01208
dcterms.bibliographicCitation.journaltitle
ACS Photonics
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.originalpublishername
American Chemical Society
dcterms.bibliographicCitation.pagestart
1396
dcterms.bibliographicCitation.pageend
1411
dcterms.bibliographicCitation.volume
11
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acsphotonics.3c01208
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2330-4022
refubium.resourceType.provider
DeepGreen