dc.contributor.author
Matsuda, Toyomu
dc.contributor.author
Perkowski, Nicolas
dc.date.accessioned
2024-04-19T08:16:11Z
dc.date.available
2024-04-19T08:16:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43321
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43037
dc.description.abstract
We give an extension of Lê’s stochastic sewing lemma. The stochastic sewing lemma proves convergence in Lm of Riemann type sums ∑[s,t]∈πAs,t for an adapted two-parameter stochastic process A, under certain conditions on the moments of As,t and of conditional expectations of As,t given Fs. Our extension replaces the conditional expectation given Fs by that given Fv for v<s, and it allows to make use of asymptotic decorrelation properties between As,t and Fv by including a singularity in (s−v). We provide three applications for which Lê’s stochastic sewing lemma seems to be insufficient. The first is to prove the convergence of Itô or Stratonovich approximations of stochastic integrals along fractional Brownian motions under low regularity assumptions. The second is to obtain new representations of local times of fractional Brownian motions via discretization. The third is to improve a regularity assumption on the diffusion coefficient of a stochastic differential equation driven by a fractional Brownian motion for pathwise uniqueness and strong existence.
en
dc.format.extent
52 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
stochastic sewing lemma
en
dc.subject
fractional stochastic calculus
en
dc.subject
applications
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
An extension of the stochastic sewing lemma and applications to fractional stochastic calculus
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e52
dcterms.bibliographicCitation.doi
10.1017/fms.2024.32
dcterms.bibliographicCitation.journaltitle
Forum of Mathematics, Sigma
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1017/fms.2024.32
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Cambridge
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2050-5094