dc.contributor.author
Lompa, T.
dc.contributor.author
Ebbing, J.
dc.contributor.author
Wünnemann, Kai
dc.date.accessioned
2024-04-18T07:21:19Z
dc.date.available
2024-04-18T07:21:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43305
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43021
dc.description.abstract
Lunar impact basins are critical markers to understand the early bombardment history. This study focuses on isostatic compensation processes at 16 lunar farside basins, exploring how long-term alteration processes affect estimates of impactor sizes and timing. Using a lithospheric flexure model, we analyze the isostatically compensated gravity signature of these basins. Our approach is based on previously published basin formation models using the iSALE-2D shock physics code. Here we investigate how isostatic compensation processes alter the gravity signature using models of basin formation as initial conditions. We compare our results with the present day observed gravity data. We assume that isostatic compensation is the result of flexural deformation of the crust-mantle boundary with varying lithospheric elastic thicknesses. Our results indicate that the effect of isostatic compensation on the gravity signature varies depending on the thermal conditions at the time of impact. We find that despite this variability, the overall influence of isostatic compensation on the gravity signature is generally moderate to minor. Additionally, our analysis is consistent with previous studies that have shown that the elastic thickness varies across the Moon. Our findings contribute to our understanding of the relationship between basin formation and the thermal evolution of the Moon. The variations in elastic thickness found provide nuanced insights into lunar geological processes and improve our understanding of the early history of the Moon.
en
dc.format.extent
23 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
impact basins
en
dc.subject
impact cratering
en
dc.subject
elastic thickness of the lithosphere
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
Evolution of Impact Basin Gravity Signatures on the Lunar Farside: A Long‐Term Alteration Process
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-04-15T20:36:54Z
dcterms.bibliographicCitation.articlenumber
e2023JE008177
dcterms.bibliographicCitation.doi
10.1029/2023JE008177
dcterms.bibliographicCitation.journaltitle
Journal of Geophysical Research: Planets
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
129
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2023JE008177
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2169-9097
dcterms.isPartOf.eissn
2169-9100
refubium.resourceType.provider
DeepGreen