dc.contributor.author
Bhuvanesh, Thanga
dc.contributor.author
Nie, Yan
dc.contributor.author
Machatschek, Rainhard
dc.contributor.author
Ma, Nan
dc.contributor.author
Lendlein, Andreas
dc.date.accessioned
2024-04-18T05:57:52Z
dc.date.available
2024-04-18T05:57:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43298
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43014
dc.description.abstract
A layer of laminins, assembled on a thin sheet of collagen type IV (Col-IV) forms the backbone of the basal lamina, which controls biological processes such as embryogenesis, tissue homeostasis, and development. Here, the dynamic functions of laminin-111 (Lam-111) in ultrathin films at the air–water interface are investigated. It is shown that the 2D confinement induces polymerization and that expansion via adlayer formation occurs only with extended growth time. The highly robust self-assembly enables the functionalization of surfaces with cross-linked 2D Lam-111 networks of defined thickness using little more than a beaker. The 2D laminin material also displays two dynamic functions required for the maintenance of tissues – the capability for self-renewal and self-healing. By assembling Lam-111 2D networks at the surface of Col-IV sheets, freestanding bilayers closely mimicking the basal lamina can be produced in vitro. There is a marked difference in miPSC spreading and adhesion force between Lam-111 sheets assembled in the presence or absence of Col-IV. These fundamental studies highlight the importance of dynamic functions, encoded into the molecular structure of the building blocks, for the assembly, maintenance, and functioning of the complex material systems found in natural tissues and can provide cues for the molecular design of resilient technical systems.
en
dc.format.extent
13 Seiten
dc.rights
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
2D materials
en
dc.subject
molecularly programmed materials
en
dc.subject
multifunctionality
en
dc.subject
self‐assembly
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Laminin–Dynamic Bonds Enable Multifunctionality in a Biological 2D Network
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2024-04-12T13:01:25Z
dcterms.bibliographicCitation.articlenumber
2304268
dcterms.bibliographicCitation.doi
10.1002/adfm.202304268
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
46
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202304268
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1616-301X
dcterms.isPartOf.eissn
1616-3028
refubium.resourceType.provider
DeepGreen