dc.contributor.author
Djurdjevac, Ana
dc.contributor.author
Kremp, Helena
dc.contributor.author
Perkowski, Nicolas
dc.date.accessioned
2024-10-07T07:28:22Z
dc.date.available
2024-10-07T07:28:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43144
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42860
dc.description.abstract
We consider a nonlinear SPDE approximation of the Dean–Kawasaki equation for independent particles. Our approximation satisfies the physical constraints of the particle system, i.e. its solution is a probability measure for all times (preservation of positivity and mass conservation). Using a duality argument, we prove that the weak error between particle system and nonlinear SPDE is of the order N-1-1/(d/2+1) log N. Along the way we show well-posedness, a comparison principle, and an entropy estimate for a class of nonlinear regularized Dean–Kawasaki equations with Itô noise.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Dean–Kawasaki equation
en
dc.subject
Weak error analysis
en
dc.subject
Laplace duality
en
dc.subject
Nonlinear SPDE
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Weak error analysis for a nonlinear SPDE approximation of the Dean–Kawasaki equation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s40072-024-00324-1
dcterms.bibliographicCitation.journaltitle
Stochastics and Partial Differential Equations: Analysis and Computations
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
2330
dcterms.bibliographicCitation.pageend
2355
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s40072-024-00324-1
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2194-041X
refubium.resourceType.provider
WoS-Alert