dc.contributor.author
Kästle, Emanuel D.
dc.contributor.author
Tilmann, Frederik
dc.contributor.author
AlpArray and Swath-D Working Groups
dc.date.accessioned
2024-04-09T07:18:45Z
dc.date.available
2024-04-09T07:18:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43084
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42800
dc.description.abstract
The eastern Alpine crust has been shaped by the continental collision of the European and Adriatic plates beginning at 35 Ma and was affected by a major reorganization after 20 Ma. To better understand how the eastern Alpine surface structures link with deep seated processes, we analyze the depth-dependent seismic anisotropy based on Rayleigh wave propagation. Ambient noise recordings are evaluated to extract Rayleigh wave phase dispersion measurements. These are inverted in a two step approach for the azimuthally anisotropic shear velocity structure. Both steps are performed with a reversible jump Markov chain Monte Carlo (rj-McMC) approach that estimates data errors and propagates the modeled uncertainties from the phase velocity maps into the depth inversion. A two layer structure of azimuthal anisotropy is imaged in the Alpine crust, with an orogen-parallel upper crust and approximately orogen-perpendicular layer in the lower crust and the uppermost mantle. In the upper layer, the anisotropy tends to follow major fault lines and may thus be an apparent, structurally driven anisotropy. The main foliation and fold axis orientations might contribute to the anisotropy. In the lower crust, the N-S orientation of the fast axis is mostly confined to regions north of the Periadriatic Fault and may be related to European subduction. Outside the orogen, no clearly layered structure is identified. The anisotropy pattern in the northern Alpine foreland is found to be similar compared to SKS studies which is an indication of very homogeneous fast axis directions throughout the crust and the upper mantle.
en
dc.format.extent
24 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
azimuthal anisotropy
en
dc.subject
Bayesian tomography
en
dc.subject
ambient noise
en
dc.subject
surface-wave tomography
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Anisotropic Reversible-Jump McMC Shear-Velocity Tomography of the Eastern Alpine Crust
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2023GC011238
dcterms.bibliographicCitation.doi
10.1029/2023GC011238
dcterms.bibliographicCitation.journaltitle
Geochemistry, Geophysics, Geosystems
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
25
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2023GC011238
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geophysik
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1525-2027