dc.contributor.author
Groza, Raluca
dc.contributor.author
Schmidt, Kita Valerie
dc.contributor.author
Müller, Paul Markus
dc.contributor.author
Ronchi, Paolo
dc.contributor.author
Schlack-Leigers, Claire
dc.contributor.author
Neu, Ursula
dc.contributor.author
Puchkov, Dmytro
dc.contributor.author
Dimova, Rumiana
dc.contributor.author
Matthaeus, Claudia
dc.contributor.author
Ewers, Helge
dc.date.accessioned
2024-04-09T07:10:38Z
dc.date.available
2024-04-09T07:10:38Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43083
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42799
dc.description.abstract
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Membrane biophysics
en
dc.subject
Adhesion energy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Adhesion energy controls lipid binding-mediated endocytosis
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2767
dcterms.bibliographicCitation.doi
10.1038/s41467-024-47109-7
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-47109-7
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723