dc.contributor.author
Mohapatra, Sipra
dc.contributor.author
Teherpuria, Hema
dc.contributor.author
Paul Chowdhury, Sapta Sindhu
dc.contributor.author
Ansari, Suleman Jalilahmad
dc.contributor.author
Jaiswal, Prabhat K.
dc.contributor.author
Netz, Roland R.
dc.contributor.author
Mogurampelly, Santosh
dc.date.accessioned
2024-04-19T12:40:38Z
dc.date.available
2024-04-19T12:40:38Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43014
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42728
dc.description.abstract
Using all-atom molecular dynamics simulations, we report the structure and ion transport characteristics of a new class of solid polymer electrolytes that contain the biodegradable and mechanically stable biopolymer pectin. We used highly conducting ethylene carbonate (EC) as a solvent for simulating lithium–trifluoromethanesulfonimide (LiTFSI) salt containing different weight percentages of pectin. Our simulations reveal that the pectin chains reduce the coordination number of lithium ions around their counterions (and vice versa) because of stronger lithium–pectin interactions compared to lithium–TFSI interactions. Furthermore, the pectin is found to promote smaller ionic aggregates over larger ones, in contrast to the results typically reported for liquid and polymer electrolytes. We observed that the loading of pectin in EC–LiTFSI electrolytes increases their viscosity (η) and relaxation timescales (τc), indicating higher mechanical stability, and, consequently, a decrease of the mean squared displacement, diffusion coefficient (D), and Nernst–Einstein conductivity (σNE). Interestingly, while the lithium diffusivities are related to the ion-pair relaxation timescales as D+ ∼ τc−3.1, the TFSI− diffusivities exhibit excellent correlations with ion-pair relaxation timescales as D− ∼ τc−0.95. On the other hand, the NE conductivities are dictated by distinct transport mechanisms and scales with ion-pair relaxation timescales as σNE ∼ τc−1.85.
en
dc.format.extent
16 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Ion transport
en
dc.subject
All-atom molecular dynamics simulations
en
dc.subject
Solid polymer electrolytes
en
dc.subject
EC–LiTFSI electrolytes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Ion transport mechanisms in pectin-containing EC–LiTFSI electrolytes
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97774
dcterms.bibliographicCitation.doi
10.1039/d3nr04029a
dcterms.bibliographicCitation.journaltitle
Nanoscale
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.originalpublishername
Royal Society of Chemistry
dcterms.bibliographicCitation.originalpublisherplace
Cambridge
dcterms.bibliographicCitation.pagestart
3144
dcterms.bibliographicCitation.pageend
3159
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
http://xlink.rsc.org/?DOI=D3NR04029A
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.note.author
Artikel in Allianz- und Nationallizenz
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2040-3364
dcterms.isPartOf.issn
2040-3372