dc.contributor.author
Hausmann, J. Niklas
dc.contributor.author
Ashton, Marten
dc.contributor.author
Mebs, Stefan
dc.contributor.author
Walter, Carsten
dc.contributor.author
Selve, Sören
dc.contributor.author
Haumann, Michael
dc.contributor.author
Sontheimer, Tobias
dc.contributor.author
Dau, Holger
dc.contributor.author
Driess, Matthias
dc.contributor.author
Menezes, Prashanth W.
dc.date.accessioned
2024-07-29T11:35:58Z
dc.date.available
2024-07-29T11:35:58Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/42914
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-42630
dc.description.abstract
Merely all transition-metal-based materials reconstruct into similar oxyhydroxides during the electrocatalytic oxygen evolution reaction (OER), severely limiting the options for a tailored OER catalyst design. In such reconstructions, initial constituent p-block elements take a sacrificial role and leach into the electrolyte as oxyanions, thereby losing the ability to tune the catalyst's properties systematically. From a thermodynamic point of view, indium is expected to behave differently and should remain in the solid phase under alkaline OER conditions. However, the structural behavior of transition metal indium phases during the OER remains unexplored. Herein, are synthesized intermetallic cobalt indium (CoIn3) nanoparticles and revealed by in situ X-ray absorption spectroscopy and scanning transmission microscopy that they undergo phase segregation to cobalt oxyhydroxide and indium hydroxide. The obtained cobalt oxyhydroxide outperforms a metallic-cobalt-derived one due to more accessible active sites. The observed phase segregation shows that indium behaves distinctively differently from most p-block elements and remains at the electrode surface, where it can form lasting interfaces with the active metal oxo phases.
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
boron group 13 element
en
dc.subject
cobalt oxyhydroxide
en
dc.subject
in situ X-ray absorption spectroscopy
en
dc.subject
oxygen evolution reaction
en
dc.subject
reconstruction
en
dc.subject
water oxidation
en
dc.subject
water splitting
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Intermetallic Cobalt Indium Nanoparticles as Oxygen Evolution Reaction Precatalyst: A Non-Leaching p-Block Element
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2309749
dcterms.bibliographicCitation.doi
10.1002/smll.202309749
dcterms.bibliographicCitation.journaltitle
Small
dcterms.bibliographicCitation.number
29
dcterms.bibliographicCitation.volume
20
dcterms.bibliographicCitation.url
https://doi.org/10.1002/smll.202309749
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1613-6829
refubium.resourceType.provider
WoS-Alert